Сегодня

Добавить в избранное

УНИВЕРСАЛЬНЫЙ УЧЕБНИК
 


ВЕРНУТЬСЯ

 
Плоская система сил – система сил, расположенных в одной плоскости. Система сил приводится к одной силе – главному вектору и к паре сил, момент которой равен главному моменту. Момент пары сил направлен перпендикулярно к плоскости, в которой лежат силы. В плоских системах нет необходимости использовать векторное представление момента. Теорема Вариньона – если плоская система сил приводится к равнодействующей, то ее момент относительно какой-либо точки равен алгебраической (т.е. с учетом знака) сумме моментов всех сил относит. той же точки.

Условия равновесия пл. сист. сил: векторное: . аналитич:

, или где  А,В,С – точки, не лежащие на одной прямой, или , ось "х" не перпендикулярна отрезку  АВ.

Равновесие тел при наличии трения. Закон Кулона (закон Амонта – Кулона): максимальная сила сцепления пропорциональна нормальному давлению тела на плоскость

, fсц – коэффициент сцепления (зависит от материала, состояния поверхностей, определяется экспер-но). Направление силы сцепления противоположно направлению того движения, которое возникло бы при отсутствии сцепления. При скольжении тела по шероховатой поверхности к нему приложена сила трения скольжения. Ее направление противоположно скорости тела , f –коэффициент трения скольжения (определяется опытным путем). f<fсц. Реакция шероховатой (реальной) поверхности в отличии от идеально гладкой имеет две составляющие: нормальную реакцию и силу сцепления (или силу трения при движении). Угол jсц–угол сцепления (jтр – угол трения)  tgjсц=fсц   (tgjтр=f). Конус с вершиной в точке касания тел, образующая которого составляет угол сцепления (угол трения) с нормалью к поверхностям тела назыв. конусом сцепления (конус трения). Для того чтобы тело начало движение, необходимо (и достаточно), чтобы равнодействующая активных сил находилась вне конуса трения. Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Причина его появления в деформации катка и плоскости в точке их соприкосновения и смещения нормальной реакции в сторону возможного движения. Мтр= fkN – момент трения качения, fkкоэффициент трения качения; имеет размерность длины.

Пространственная система сил. Момент силы относительно оси – скалярная величина, равная моменту проекции этой силы на плоскость, перпендикулярную оси, взятому относительно точки пересечения оси с плоскостью. Момент >0, если смотря навстречу оси, мы видим поворот, который стремится совершить сила направленный против час.стр. ,

На рис. М>0. Момент силы относительно оси равен 0: 1) если сила параллельна оси (Fxy=0), 2) если линия действия силы пересекает ось (h=0); т.е. если ось и сила лежат в одной плоскости. Аналитические выражения моментов силы относительно осей координат: Мx( )=yFz – zFy;  Мy( )=zFx – xFz;  Мz( )=xFy – yFx.

Приведение пространственной системы сил к данному центру решается с помощью теоремы о параллельном переносе силы. Любая система сил, действующих на абс.тв.тело, при приведении к произвольно взятому центру О заменяется одной силой R, равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом МО, равным главному моменту системы относительно центра О (главный вектор – векторная сумма всех сил, приложенных к телу; главный момент относительно центра –векторная сумма моментов всех сил, приложенных к телу относительно того же центра). Статические инварианты пространств. сист. сил – такие характеристики этой системы, которые остаются неизменными при перемене центра приведения. 1-ый инвариант – главный вектор (квадрат модуля главного вектора): I1= Fo2= Fx2+Fy2+Fz2;  2-ой инвариант – скалярное произведение главного вектора на главный момент: I2= =Fx×Mx+Fy×My+Fz×Mz. При перемене центра приведения проекция главного момента на направление главного вектора М* не изменяется  . Совокупность силы  и пары сил, с моментом , расположенной в плоскости перпендикулярной линии действия этой силы, назыв. динамой (силовым винтом). Система приводится к динаме, если второй статический инвариант не равен 0. Прямая, вдоль которой направлены  и , называется центральной осью системы сил. Центральная ось системы сил – геометрическое место точек пространства, относительно которых главные моменты заданной системы сил имеют наим-ший модуль Мmin=M* и направлены вдоль этой оси. Если главный вектор  и гл.-ый момент , то уравнения центральной оси: .

Случаи приведения пространственной системы сил:

 

I2=

F0

М0

Случай приведения

1

I2¹ 0

F0¹ 0

M0¹ 0

Динама

2

I2= 0

F0¹ 0

M0¹ 0; М0= 0

Равнодействующая

3

I2= 0

F0= 0

M0¹ 0

Пара сил

4

I2= 0

F0= 0

M0= 0

0

Теорема Вариньона ( теорема о моменте равнодействующей силы): момент равнодействующей относительно любой точки = геометрической сумме моментов составляющих сил относительно той же точки. Условия равновесия пространств. сист.сил:

åFkx=0; åFky=0; åFkz=0; åMx(Fk)=0; åMy(Fk)=0; åMz(Fk)=0. Условия равновесия для системы параллельных сил (||z): åFkz=0; åMx(Fk)=0; åMy(Fk)=0. Центр параллельных сил – точка, через которую проходит линия действия равнодействующей системы ||-ых сил при любых поворотах этих сил около их точек приложения в одну и ту же сторону и на один и тот же угол. Координаты центра ||-ых сил:  и т.д.

Центр тяжести твердого тела – точка, неизменно связанная с этим телом, через которую проходит линия действия равнодействующей сил тяжести частиц тела при любом положении тела в пространстве. При этом поле тяжести считается однородным, т.е. силы тяжести частиц тела параллельны друг другу и сохраняют постоянную величину при любых поворотах тела. Координаты центра тяжести:

; ; , где Р=åрk, xk,yk,zk координаты точек приложения сил тяжести  рk. Центр тяжести – геометрическая точка и может лежать и вне пределов тела (например, кольцо). Центр тяжести плоской фигуры:

, DFkэлементарная площадка, F – площадь фигуры. Если площадь нельзя разбить на несколько конечных частей, то . Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси. Центр тяжести: дуги окружности с центральным углом 2a: ; кругового сектора: ; треугольник: в точке пересеч. медиан (1/3 медианы от основания).

Статический момент площади плоской фигуры – сумма произведений элементарных площадей, входящих в состав площади фигуры, на алгебраические значения расстояний до некоторой оси.  Sx=åyi×DFi= F×yc;  Sy=åxi×DFi= F×xc.

Вспомогательные теоремы для определения положения центра тяжести:

Т.1. Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Т.2. Если однородное тело имеет плоскость симметрии, то его центр тяжести находится в этой плоскости.

Т.3. Объем тела вращения, полученного вращением плоской фигуры вокруг оси, лежащей в плоскости фигуры, но не пересекающей ее, равен произведению площади фигуры на длину окружности, описанной ее центром тяжести, V=2pxcF.

Т.4. Площадь поверхности вращения, полученной вращением плоской кривой вокруг оси, лежащей в плоскости этой кривой, но не пересекающей ее, равна произведению длины этой кривой на длину окружности, описанной ее центром тяжести, F=2pxcL.

Определяя положение центра тяжести плоской фигуры с вырезанной из нее частью, можно считать площадь этой части отрицательной и тогда:  и т.д. — способ отрицательных площадей (объемов).


ВЕРНУТЬСЯ
 









Главная| Контакты | Заказать | Рефераты
 
Каталог Boom.by rating all.by

Карта сайта | Карта сайта ч.2 | KURSACH.COM © 2004 - 2011.